Explicit high-order time stepping based on componentwise application of asymptotic block Lanczos iteration
نویسنده
چکیده
This paper describes the development of explicit time-stepping methods for linear partial differential equations that are specifically designed to cope with the stiffness of the system of ordinary differential equations that results from spatial discretization. As stiffness is caused by the contrasting behavior of coupled components of the solution, it is proposed to adopt a componentwise approach in which each coefficient of the solution in an appropriate basis is computed using an individualized approximation of the solution operator. This has been accomplished by Krylov subspace spectral (KSS) methods, which use techniques from “matrices, moments and quadrature” to approximate bilinear forms involving functions of matrices via block Gaussian quadrature rules. These forms correspond to coefficients with respect to the chosen basis of the application of the solution operator of the PDE to the solution at an earlier time. In this paper it is proposed to substantially enhance the efficiency of KSS methods through the prescription of quadrature nodes based on asymptotic analysis of the recursion coefficients produced by block Lanczos iteration for each Fourier coefficient as a function of the frequency. The potential of this idea is illustrated through numerical results obtained from the application of the modified KSS methods to diffusion equations and wave equations. Copyright c © 2010 John Wiley & Sons, Ltd.
منابع مشابه
An Explicit, Stable, High-Order Spectral Method for the Wave Equation Based on Block Gaussian Quadrature
This paper presents a modification of Krylov Subspace Spectral (KSS) Methods, which build on the work of Golub, Meurant and others pertaining to moments and Gaussian quadrature to produce high-order accurate approximate solutions to the variable-coefficient second-order wave equation. Whereas KSS methods currently use Lanczos iteration to compute the needed quadrature rules, the modification us...
متن کاملBlock Lanczos Tridiagonalization of Complex Symmetric Matrices
The classic Lanczos method is an effective method for tridiagonalizing real symmetric matrices. Its block algorithm can significantly improve performance by exploiting memory hierarchies. In this paper, we present a block Lanczos method for tridiagonalizing complex symmetric matrices. Also, we propose a novel componentwise technique for detecting the loss of orthogonality to stablize the block ...
متن کاملIncompressible laminar flow computations by an upwind least-squares meshless method
In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...
متن کاملEnhancement of Krylov Subspace Spectral Methods by Block Lanczos Iteration
Abstract. This paper presents a modification of Krylov subspace spectral (KSS) methods, which build on the work of Golub, Meurant and others, pertaining to moments and Gaussian quadrature to produce high-order accurate approximate solutions to variable-coefficient time-dependent PDEs. Whereas KSS methods currently use Lanczos iteration to compute the needed quadrature rules, our modification us...
متن کاملMatrices, Moments and Quadrature: Applications to Time-Dependent Partial Differential Equations
The numerical solution of a time-dependent PDE generally involves the solution of a stiff system of ODEs arising from spatial discretization of the PDE. There are many methods in the literature for solving such systems, such as exponential propagation iterative (EPI) methods, that rely on Krylov projection to compute matrix function-vector products. Unfortunately, as spatial resolution increase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 19 شماره
صفحات -
تاریخ انتشار 2012